Search Results for: Kernels
ε → yields that ≤ ep ′ [〈q, y 〉], p ′ ∈ p, y ∈ l∞(f ; intk∗ ). using dominated convergence, we can strengthen this to ≤ ep ′ [〈q, y 〉], p ′ ∈ p, y ∈ l∞(f ;k∗ ). applying measurable selection (lemma a. ) and remark , we can find y ∈ l∞(f ;k∗t ) such that 〈q, y 〉 } . lemma a. and a fact about borel kernels
ε → yields that ≤ ep ′ [〈q, y 〉], p ′ ∈ p, y ∈ l∞(f ; intk∗ ). using dominated convergence, we can strengthen this to ≤ ep ′ [〈q, y 〉], p ′ ∈ p, y ∈ l∞(f ;k∗ ). applying measurable selection (lemma a. ) and remark , we can find y ∈ l∞(f ;k∗t ) such that 〈q, y 〉 } . lemma a. and a fact about borel kernels...
http://www.math.columbia.edu/~mnutz/docs/FTAPtrans.pdf